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We present a new spectral method to simulate numerically the water-
wave problem in a channel for a fluid of finite or infinite depth. It is
formulated in terms of the free surface efevation n and the velocity
potential ¢. The numerical method is based on the reduction of this
problemto alower-dimensional computation involving surface variables
alone. To accomplish this, we describe the Taylor expansicn of the
Birichlet Neumann operator in hemogeneous powers of the surface
elevation n. Each term is a concatenation of Fourier multipliers with
powers of 7 and its derivatives and is valid uniformly in wavenumber,
These are easily calculated using the fast Fourier transform. The method
is illustrated by computing the long time evolution of modulated wave
packets and of approximations to the Stokes steady wave train. By
imposing a surface pressure we observe surface steepening in large
amplitude evolution, and wake and bow wave development for flows
with a close to critical Froude number. Finally, we give an example of
nonlinear evolution of the distribution of energy among normal modes.
© 1993 Academic Press, Inc.

1. INTRODUCTION

The water-wave problem describes the evolution of an
incompressible ideal, irrotational fluid with a free surface
under the influence of gravity. The study of nonlinear
gravity waves has been the object of numerous theoretical,
numerical, and experimental investigations. These have
classical origins in the work last century of Boussinesq,
Korteweg and deVries, and Stokes [12]. Today, work on
the subject can be divided roughly into two categories, the
analysis of steady waves, which progress by translation at
constant velocity without change of form, and the initial
value problem for time dependent nonlinear evolution. This
paper presents a new numerical method for calculation of
the latter problem. The relevance of numerical studies is to
problems of nonlinear wave interaction and of breaking and
in practicail applications in ocean and naval hydrodynamics.

A study of time dependent water waves can focus either
on a regime governed by a small parameter, or on large
amplitude fully nonlinear evolution. In a perturbative
regime one typically reduces the problem to nonlinear
partial differential equations in the horizontal variables. In
the long wave regime this leads to the Boussinesq and
Korteweg—deVries equations. In a moduiational regime,
one describes the evolution of wave packets through the
nonlinear Schrodinger equation for the complex wavetrain
envelope (Zakharov { 18], Hasimoto and Ono [7], Craig,
Sulem, and Sulem [5]). There have been several extensions
to higher order; in particular there are studies of the
Zakharov equations, where third-order interactions are
taken into account, and the modified Zakharov equations,
where fourth- and fifth-order interactions are kept [11].
Yuen and Lake [17] survey the development of the theory
of modulational waves and their instabilities. Of course, the
validity of the description of the evolution given in these
approaches is restricted to the appropriate perturbative
regime,

In Ref [9], Longuet-Higgins and Cokelet developed
a mixed Eulerian Lagrangian numerical method that
describes large amplitude waves in deep water. Their
calculations are not limited to a perturbative regime, and
they are able to track steep waves up to overturning. The
method describes the full problem of ideal Euier flow within
the fluid region. That is, for incompressible irrotational flow
the fluid velocity can be described as the gradient of the
velocity potential, u =V, where ¢ is harmonic within the
fluid region. In this formulation, the nonlinearity and
the time dependence of the problem appear explicitly only in
the boundary conditions on the free surface. The main com-
putational effort is to describe the fluid velocity on the free
surface; in [9] the relationship between the velocity poten-
tial ¢ and its normal derivative é,¢ on the free surface is
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given by an integral equation. In subsequent work, Baker,
Meiron, and Orszag { 1] computed free surface evolution in
two dimensions using a vortex method to describe u=Ve,
Alternatively, West, Brueckner, and Janda [14] and
Dommermuth and Yue [6] developed perturbation
methods to describe ¢ and extended Zakharov’s mode-
coupling description of the nonlinear interaction, to
perform numerical simulations of the water-wave problem
in deep water. Other authors who compute the evolution of
free surfaces include Vinje and Brevig {13] and New,
Mclver, and Peregrine [10]. ,

In this paper, we present a spectral method to compute
time dependent spatially periodic surface waves in water
which cap be of finite or infinite depth. The independent
variables are evaluated at the free surface only and the
velocity potential and its derivatives in the interior are not
used (although they could be easily computed from the sur-
face values by Cauchy's theorem). The main contribution is
a new and numerically efficient description of the Dirichlet—
Neumann operator G(n), the lincar operator relating the
boundary values of ¢ on the surface 5 to the values of @, ¢.
The method is based on the Taylor series expansion of G(»)
in homogeneous powers of the surface elevation #(x), giving
a result which is valid uniformly in wavenumber. For
two-dimensional problems the expansions are rigorously
justified by a theorem of Coifman and Meyer [2] on the
analyticity of integral operators of Cauchy type, over curves
of controlled Lipschitz norm. Furthermore, we show that
G(n) =327 G,(n), where each G,(n) is homogeneous of
degree j in n and is a sum of ordered products of #(x) and
the Fourier multipliers D = —id, and tanh(hD) (where £ is
the average depth of the fluid). This expansion differs
from the spectral methods of both West er al. [14] and
Dommermuth and Yue [6], where both ¢ and #» are
assumed to be O{g) quantities, and the expansion is not
uniform in wavenumber.

In this paper, we restrict ourselves to the case of
two-dimensional flows, with finite horizontal bottom
boundaries, although these are not inherent limitations of
the method. The terms G, of the Taylor expansion can be
obtained from a recursion formuia [3] which is described in
Section 3; they are easily numerically computed using fast
Fourier transform algorithms. We have tested the efficiency
of the method on several model problems, which are
described in Section 4. The first calculation is of slowly
modulated oscillatory wave packets, where the uniformity
of the method in wavenumber produces the correct phase
and group velocities in the numerical solution. A second set
of calculations is of approximations to the steady Stokes
wavetrain, for both small and large amplitudes. We also
compute waves as they steepen on their approach to a
breaking point, imposing a surface pressure to increase their
energy. To model the surface motion due to a ship, a
localized pressure distribution moving with constant

velocity is applied to the free surface. Both subcritical
and near critical computations are presented, the latter
describing the emergence of solitons in the bow wave.
Finally, we describe the nonlinear time evolution of the
distribution of energy among the normal modes. All the
computations are carried on a Vax or a RISC-IBM and in
practice run very rapidly on these machines. Our method is
conceptually straightforward, is very fast in practice, and is
based upon approximations to the free surface problem that
are mathematically rigorous. This approach to the
computation of ideal fluids with freec surfaces can be
extended to waves of larger amplitudes, problems with
bottom topography, and three-dimensional flows, projects
which we are currently pursuing.

2, MATHEMATICAL FORMULATION

We consider the motion of a free surface of a two-dimen-
sional fluid in a horizontal channel under the influence
of gravity. The bottom is fixed at a constant depth —A.
The fluid is assumed to be incompressible, inviscid, and
irrotational. The velocity potential ¢ satisfies

A =0 (2.1)

in the fluid region bounded by {y= —h} and the free
surface 7(#) = { y =#5(x, 1)} with the boundary conditions

dpfon=0 on y=-—h (2.2)
and
@, +3(pi+ol)+gn=0 (2.3a)
nitne@,—@,=0 (2.3b)
on y=#(x,t). |

We assume periodic boundary conditions in the
x-direction. Let &(x, £} = @(x, #{x, ¢), {) be the potential on
the top surface. We define the Dirichlet-Neumann operator
by

Glmé=(1+n2)2 22,

= (2.4)

In Egs. (2.3), the only reference to the velocity potential
interior to the fluid is through the normal derivative &, =
(1+72)" " (@, - n.0,). Additionally, {,=¢.+1.0,, so
that, using (2.4), ¢, on the surface can be described in terms
of &, and G(n)¢ by @, =(1+7%) ' (G(n) € +1,L,). Noting
that ¢, =&, — @,n,, Eqs. (2.3) are rewritten:
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n,~G(n)§=0 (2.5a)

£+ (£2—(Gn) &Y' =21, G &)+ gn=0.

(2.5b)

2(1+ 2(1+142)

These equations are Hamilton's canonical equations in
Zakharov's formulation of the water-wave problem as a
Hamiltonian system.

In [2], Coifman and Meyer prove that, il 5 has
supremum-norm and Lipschitz-norm smaller than a certain
constant C,, then G is an analytic function of ». It follows
that G can be written in terms of a convergent Taylor
expansion

=Y. G/(n, kD). (2.6)
j
For =0, G(0) is the convolution operator,
G(0)¢(x)=—— v pf_m ﬁm
=%H = e tanh(hk) E(y) dy dk
= D tanh(hD) &(x), (2.7)

where D= —id,. For a nontrivial surface deformation #, G;
is a sum of ordered products of # and the Fourier multiplicrs
D and tanh(AD) and is homogeneous of degree j in n. The
expansion is obtained from a recursion formula in the
following way.

Consider the harmonic functions g (x, y) = e*~
cosh(p(y + h)), which satisfy additionally the bottom
boundary condition &,¢,(x,—k)=0. Their gradients are
Vo, = (ipe™ cosh(p{y + h)), pe™ sinh(p(y+Hh)))7; thus
the relationship (2.4) between ¢,(x, #(x)) and 2, ¢, on the
surface is

dp,  dp,

—L—py —L=C . 2.8
5y M ox (n)e, (2.8)
We seek a homogeneous expansion of G(n) =37, G, {n).

For this purpose, we write the Taylor expansions of
cosh(p(n(x)+ h)) and sinh{p(n(x)+ #)) about y=0, and
substitute in the identity (2.8):

1 ) ) )
Y = {m) (psinh{ph)— in, p cosh(ph}) e*~

Jeven J

+ % =

(P (p cosh(ph) —in, p sinh(ph)) €™

jodd
-(L G;(n))(j S 5 (o cosh(ph) >

2

JDdd

- (pn) sinh( ph) e) (29)

Identifying terms of the same degree in #, we obtain an
expansion of the operator G{s). For j=0, we have

G(0) e”* = p tanh(kp) . (2.10)

Fouricr analysis describes a general function {(x) which is
sufficiently well behaved as a sum of such terms; hence

G(0) {{x) = D tanh(hD) {(x) (2.11)

The higher terms in the expansion are derived from (2.9)
similarly: For j > 0 even,

1 o
G,m =1 (n’D?* ! tanh(hD) - i(y’) . D’ tanh(AD))

. J—iny-1
EJ_ G,(n)( —m’" D
leven
- ¥ GA n)( D #f~‘D’~!tanh(hD) (2.12)
f!:d'cri .
For j odd,
1 o
G;{n) =7 (n'D’* " —i(n’), D))
1 L
G - f=ipi-t
‘gj r(’?)("]*—l)!)?
{odd
-y G n/~'Di~'tanh(hD).  (2.13)

“ —

{even

This is the recursion formula for G(n). The first several
terms of this expansion are
G, =D tanh(hD)
G(n)y= Dy —tanh(hD)}n tanh{hD)) D
G,(y) = — L D(Dy* tanh(hD) + tanh(hD) 4D
— 2 tanh(hD) nD tanh(hD)n tanh(hD)) D

(2.14)

In practice, this expansion is able to be computed to many
terms with relatively little effort.

Remarks. (i} To obtain the expansion of the operator
G in the case of fluids of infinite depth (that is = o0), one
replaces the Hilbert transform for the strip i tanh{#D) by the
Hilbert transform for the half-plane i sgn(D) in the above
expressions.

(ii) The recursion procedure outlined above carries
through in higher spatial dimensions as well, giving expan-
sions for the homogeneous operators similar to (2.13).
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(ili) We emphasize that G; is a sum of products of 5 and
the Fourier multipliers D and tanh(AD). Each term of the
expansion is thercfore easy to compute numerically when
using a pseudospectral method. Products with #{x) are
performed in physical space, while the Fourier multipliers
D and D tanh(AD) are computed in spectral space. The
transformation from one space to the other is efficiently
carried out using the fast Fourier transform.

3. DESCRIPTION OF THE NUMERICAL METHOD

To integrate numerically the system (2.5), we separate the
linear and nonlinear terms in the form:

—G0)E =G - G(0)¢ (3.1a)

GME?* —2n,.£,.G(n)d).
(3.1b)

1

In the spatial variable x, the functions are initially expanded
in Fourier series. To approximate the operator G(n) we use
the recursion formula to compute analytically the first M
terms in the Taylor series expansion:

G(n) = GO)+ Gi(n) + -+ @y

+Galn) =G ().

For given n(x), the result is calculated by a concatenation
of the operations of multiplication and the fast Fourier
transform.

For the time stepping, the linear part is solved exactly and
we use a second-order Adams-Bashforth scheme for the
nonlinear terms. We are thus led to solve the system

(1 + 1) = cos(/gG(0) 1) n(r)
+/G(0)/g sin(,/gG(0) 81) &(1)
1
+ in(\/2G(0) 6t)
J2G(0)

x (1L.5F, ()= 0.5F, (= d1))

+é (1 —cos(,/gG(0) d1))
x (1.5F,(#)—0.5F,(1 — 61))

— /2/G(0) sin(,/gG(0) 61} n{1)
+ cos(+/2G(0) 8t) £(3)

gG(0) o1))

{3.2a)

E(t+6t)=

1
G(O) {1 —cos(

x (1.5F,(1) — 0.5F (¢ — 1))

+ \/g_lcmsin( 2G(0) 1)
x (1L5F5(1) — 0.5F,(1 — 61)), (3.2b)
where
Fi(1) = (G ) — Go) £(1) (3.3a)
Fy(y=—3(1+n3)""
*ALZ = (GM(n)E)? — 2, E.GMm)E). {3.3b)

1t is in the implementation of the nonlinear terms F, and F,
that the expressions (2.12) and (2.13) for the Dirichlet—
Neumann operator are used. In the numerical computations
to date we used terms in the expansion of G(n) up to degree
M =3, 4, and 5, using recursion formulae (2.12)-(2.13) to
compute them. Spatially, we use a pseudospectral method
with a resolution of 32 or 64 collocation points in the
interval [0, 2z[. Our computations were run for times
typically as long as several periods of a Stokes wavetrain.
The numerical scheme described above includes no
explicit dissipation. After sufficiently long computation
time, we have observed oscillations in the wave profile due
to an onset of instability initiated by some growth for high
wave numbers. In the calculations of Longuet-Higgins and
Cokelet [9] and Dommermuth and Yue [6], similar
instabilities were observed. To remove them, we used the
five-point smoothing function proposed in the latter
reference and equivalent in the wavenumber space to the

low-pass filter [6]
L ”(nll) —cos (27[' Ilkn#):l
Ky N

where k, is the maximum wave number. It allowed our
computations to proceed to significantly longer intervals of
time.

The validity of the computation is checked by the conser-
vation of total energy

A{k,,}=%[5 +4rcos (

E=1 [ (2GE+ gn?) dx
and of momentum

I=J‘ &n, dx.

We note that the functional E=E{n, ¢) is Zakharov's
Hamiltonian for the water-wave problem.
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4. NUMERICAL RESULTS

Qur goal in the computations presented in this paper is
not to present detailed fluid dynamical computations,
rather it is to show that this numerical approach to comput-
ing the evolution of free surfaces is flexible and robust and
that it can be adapted to many different time dependent
problems. We have chosen several different model problems
to illustrate the method.

Our first simulation is to compute the evolution of the
slowly modulated wave packet

#o(x) =0.01 exp — 3 {x — n)* cos(10x)

with zero initial velocity potential in a channel of average
depth /= 1. We carried the computation during a long time
(about 100 fundamental periods) and the run could be con-
tinued longer. In Fig. 1a, y(x, ¢) is represented as a function
of {x, 1) at short intervals of times, namely from =0 to
t=5 with 4r=0.1. To visualize the evolution of the wave
for longer times, we have plotted in Fig. 1b, y(x, t) + ar at
t=0,1,2,3, .. 50 as a function of x (x was chosen equal
to 0.01). We observe numerically that the solution has

well-defined group velocity C,=w'(k}=0,/gGo(10),

FIG. la.
(4{x — 7)%/3) cos{10x); E(x) =10

and phase velocity C,=(w/k)=+/gG,(10}/10, which is
approximately twice C, (where k and @ are related by the
dispersion relation w? = gk tanh(#k)). This is in accordance
with the uniformity in wavenumber of our expansion of
G(n). The computation was performed with a resolution of
64 collocation points and an expansion of G up to fourth
order, which required a computation time of less that 0.1s
per time step on an RISC-IBM 6000.

We also take the second-order approximation to the
Stokes wavetrain [ 15, Chap. 13] as initial conditions:

no(x) = a cos(kx) + p,a’ cos(2kx)
Eolx) = v, a cosh(k(no + h)) sin{kx) (4.1)
+ v,a® cosh(2k(nq + h)) sin(2kx)

with

) 3
2= 5 k coth(hk) (1 +m)

_ w 3 w
' k sinh(hk)’

"2 8 Sinh*(hk)’

0.005

—0.005

Evolution of the free surface n(x,¢) in the (x,t) plane, at ¢=0,01,02,...5 for the initial condition #5e(x)=00!exp—
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FIG. 1b. Same initial conditions as Fig. 1a. Evolution of the free surface n(x, r}+ 001t vs x at ¢ =0, 1, 2, ..., 30a.

and o given by the dispersion relation w’= gk tanh(kk).
We have run several calculations with increasing values of
the amplitude parameter. The first was a wave of small
amplitude (k=35, a=0.065) in a channel of average depth
h=1. This is close to linear regime (|n,|.,, =0.13784) and
the computation was performed up to =50 (that is, over
18 fundamental periods). Figure 2a shows the evolution of
the surface between ¢ =0 and 1 =12 in the (x, r)-plane. Two
terms in the expansion of the Stokes wave ‘is sufficiently
accurate to produce a wave which is virtually steady,
although slow oscillations in width of the crest are visible.
The second calculation is again the two-term expansion of
the Stokes wavetrain, with, however, k=1, A =04, and
a=0.07. The amplitude %], = 0.334 is in a fully nonlinear
regime. The calculation was carried out to =24 and could
again have been carried further with no apparent
singularities. The wave is far from steady, yet progresses
with remarkable similarity in overall detail to the steady
Stokes wavetrain of the same amplitude. Furthermore, the
speed of the wave in the computation is within 1% of that
of the steady wavetrain. For cases with larger amplitude,

the solution eventually breaks. Indeed, for «=008
(|70} o = 0.58h), the wave increases in amplitude and starts
to break at r =10.2.

Now we turn to nonlinear, unsteady waves that may

TABLE 1
t Momentum Energy
0.00 —0.73644 102 0.10050 10~
0.40 —0.78401 102 0.10720 10!
0.80 —0.91915 10?2 0.12839 10!
12 —0.11249 107! 0.16543 10"
1.6 - 0.13812 10! 021516 107"
2.0 —0.16649 10~} 0.27071 10~
24 —0.19362 10! 0.31714 10"
28 —0.21314 10! 0.34713 10!
12 —0.21997 101 0.35449 107!
36 —0.21975 10! 0.35440 10!
40 —0.21967 10! 0.35432 10!
41 —0.21962 10! 0.35418 10!
42 —0.21956 10! 035413 10!
43 —0.21958 10! 0.35418 10!
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12,

0065 h=1,att=0,0204, ..,

5, a

Fig. 2a. Evolution of the second-order approximation Stokes wavetrain, with the parameters: k

04,atr=0,02,04, .., 24

007, h=

FIG. 2b. Evolution of the second-order approximation Stokes wavetrain, with the parameters: k=1, a

581/108/1-6
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FI1G. 4b, Localized surface pressure with Froude number F=0.8.

wake is relatively small, but in the bow wave we observe the
development of structures similar to solitons described by
Wu [161.

Our final model calculation is an' example of the
distribution of energy among the normal modes in the time
evolution of interacting periodic waves. The iInitial data are
concentrated in modes k = 1 and k£ = 2. Figure 5 exhibits the
amplitudes of the Fourier transform of n. One sees the
exchange of energy between modes and significant mode
coupling to at least £ =6 over the time interval t=0 to

=10,

5. CONCLUDING REMARKS

We have developed a numerical method to study non-
linear, unsteady free-surface waves. It is presented for fluids
in a channel of finite depth but is easily adapted to fluids of
infinite depth. Essentially, it involves the expansion of the
Dirichlet-Neumann operator in terms of the free surface.
The fluid dynamical results in this paper are preliminary,

in the sense that we have calculated two-dimensional
time-dependent problems where other methods are also
available. Nonetheless, we have shown. that the method is
high order accurate and very fast, as well as being mathe-
maticaily justified and easy to implement. This approach is
not inherently restricted to two-dimensional flows, as
opposed to many methods in the study of free surface
dynamics. With little modification, one can write the
expansion of the Dirichlet—-Neumann operator in three
dimensions or for flows with bottom topography. Indeed,
three space dimensions, time-dependent free surface
computations are currently under way. We are hopeful
that our method could make problems of this type more
amenable.

We plan also to address other questions such as surface
waves with bottom topography for which a modification of
this method is suitable; again, computations can be reduced
to the free surface with a Fourier decomposition used to
implement the Dirichlet-Neumann operator. We are also
interested in a detailed study of the process of breakdown
and the formation of singularities.
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N .

0.02

0.01

FIG, 5. Time evolution of the ampiitudes of the Fourier transform of # for interacting periodic waves.
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